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ABSTRACT

Neural Radiance Fields (NeRFs) aim to synthesize novel views of objects and
scenes, given the object-centric camera views with large overlaps. However, we
conjugate that this paradigm does not fit the nature of the street views that are
collected by many self-driving cars from the large-scale unbounded scenes. Also,
the onboard cameras perceive scenes without much overlapping. Thus, existing
NeRFs often produce blurs, “floaters” and other artifacts on street-view synthesis.
In this paper, we propose a new street-view NeRF (S-NeRF) that considers novel
view synthesis of both the large-scale background scenes and the foreground mov-
ing vehicles jointly. Specifically, we improve the scene parameterization function
and the camera poses for learning better neural representations from street views.
We also use the the noisy and sparse LiDAR points to boost the training and learn
a robust geometry and reprojection based confidence to address the depth out-
liers. Moreover, we extend our S-NeRF for reconstructing moving vehicles that is
impracticable for conventional NeRFs. Thorough experiments on the large-scale
driving datasets (e.g., nuScenes and Waymo) demonstrate that our method beats
the state-of-the-art rivals by reducing 7~ 40% of the mean-squared error in the
street-view synthesis and a 45% PSNR gain for the moving vehicles rendering.

1 INTRODUCTION

Neural Radiance Fields ( , ) have shown impressive performance on photo-
realistic novel view rendering. However, original NeRF is usually designed for object-centric scenes
and require camera views to be heavily overlapped (as shown in Figure 1(a)).

Recently, more and more street view data are collected by self-driving cars. The reconstruction
and novel view rendering for street views can be very useful in driving simulation, data genera-
tion, AR and VR. However, these data are often collected in the unbounded outdoor scenes (e.g.
nuScenes ( , ) and Waymo ( s ) datasets). The camera placements
of such data acquisition systems are usually in a panoramic settings without object-centric camera
views (Figure 1(b)). Moreover, the overlaps between adjacent camera views are too small to be ef-
fective for training NeRFs. Since the ego car is moving fast, some objects or contents only appear in
a limited number of image views. (e.g. Most of the vehicles need to be reconstructed from just 2 ~ 6
views.) All these problems make it difficult to optimize existing NeRFs for street-view synthesis.

MipNeRF-360 ( , ) is designed for training in unbounded scenes. BlockNeRF (
, ) proposes a block-combination strategy with refined poses, appearances, and expo-
sure on the MipNeRF ( , ) base model for processing large-scale outdoor scenes.

However, they still require enough intersected camera rays (Figure 1(a)) and large overlaps across
different cameras (e.g. Block-NeRF uses a special system with twelve cameras for data acquisition
to guarantee enough overlaps between different camera views). They produce many blurs, “floaters”

and other artifacts when training on existing self-driving datasets (e.g. nuScenes ( , )
and Waymo ( , ), as shown in Figure 2(a)).
Urban-NeRF ( , ) takes accurate dense LiDAR depth as supervision for the recon-

struction of urban scenes. However, these dense LiDAR depths are difficult and expensive to collect.
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Flgurel Problem illustration. (a) Conventional NeRFs ( ); ( )
require object-centric camera views with large overlaps. (b) In the challenging large-scale outdoor
driving scenes ( ); ( )), the camera placements for data collection are

usually in a panoramic view settings. Rays from different cameras barely intersect with others in
the unbounded scenes. The overlapped field of view between adjacent cameras is too small to be
effective for training the existing NeRF models.

As shown in Figure 3(a), data ( ); ( ) collected by self-driving cars
can not be used for training Urban-NeRF because they only acquire sparse LiDAR points with plenty
of outliers when projected to images (e.g. only 2~5K points are captured for each nuScenes image).

In this paper, we contribute a new NeRF design (S-NeRF) for the novel view synthesis of both the
large-scale (background) scenes and the foreground moving vehicles. Different from other large-

scale NeRFs ( , ), our method does not require specially
designed data acquisition platform used in them. Our S-NeRF can be trained on the standard self-
driving datasets (e.g. nuScenes ( , ) and Waymo ( , )) that are collected

by common self-driving cars with fewer cameras and noisy sparse LiDAR points to synthesize novel
street views.

We improve the scene parameterization function and the camera poses for learning better neural
representations from street views. We also develop a novel depth rendering and supervision method
using the noisy sparse LiDAR signals to effectively train our S-NeRF for street-view synthesis. To
deal with the depth outliers, we propose a new confidence metric learned from the robust geometry
and reprojection consistencies. Not only for the background scenes, we further extend our S-NeRF
for high-quality reconstruction of the moving vehicles (e.g. moving cars) using the proposed virtual
camera transformation.

In the experiments, we demonstrate the performance of our S-NeRF on the standard driving
datasets ( s ). For the static scene reconstruction, our S-NeRF
far outperforms the large scale NeRFs ( , ). It reduces
the mean-squared error by 7 ~ 40% and produces i 1mpress1ve depth renderrngs (Frgure 2(b)). For
the foreground objects, S-NeRF is shown capable of reconstructing moving vehicles in high qual-
ity, which is impracticable for conventional NeRFs ( ; , ;

s ). It also beats the latest mesh-based reconstruction method ( ),
improving the PSNR by 45% and the structure similarity by 18%.

2 RELATED WORK
2.1 3D RECONSTRUCTION

Traditional reconstruction and novel view rendering ( , ) often rely on Structure-
from-Motion (SfM), multi-view stereo and graphic rendering ( , ).

Learning- based approaches have been widely used in 3D scene and object reconstruction (
; , ). They encode the feature through a deep neural
network and learn various geometry representations, such as voxels ( , ; s
), patches ( , ) and meshes ( s ; , ).

2.2 NEURAL RADIANCE FIELDS

Neural Radiance Fields (NeRF) is proposed in ( , ) as an implicit neural rep-
resentation for novel view synthesis. Various types of NeRFs haven been proposed for acceleration.
( s ; s ), better generalization abilities ( s ;
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(a) Mip-NeRF 360 (depth & RGB) (b) Ours (depth & RGB) (c) GeoSim (d) Ours

Figure 2: Performance illustration in novel view rendering on a challenging nuScenes scene Caesar
et al. (2019), (a) the state-of-the-art method Barron et al. (2022) produces poor results with blurred
texture details and plenty of depth errors, (b) our S-NeRF can achieve accurate depth maps and
fine texture details with fewer artifacts. (d) Our method can also be used for the reconstruction
of moving vehicles which is impossible for previous NeRFs. It can synthesize better novel views
compared with the mesh method Chen et al. (2021b).

Yang, 2021), new implicit modeling functions (Yariv et al., 2021; Wang et al., 2021a), large-scale
scenes (Tancik et al., 2022; Zhang et al., 2020), and depth supervised training (Deng et al., 2022;
Rematas et al., 2022).

Large-scale NeRF Many NeRFs have been proposed to address the challenges of large-scale out-
door scenes. NeRF in the wild (Martin-Brualla et al., 2021) applies appearance and transient em-
beddings to solve the lighting changes and transient occlusions. Neural plenoptic sampling (Li et al.,
2021b) proposes to use a Multi-Layer Perceptron (MLP) as an approximator to learn the plenoptic
function and represent the light-field in NeRF. Mip-NeRF (Barron et al., 2021) develops a conical
frustum encoding to better encode the scenes at a continuously-valued scale. Using Mip-NeRF as
a base block, Block-NeRF (Tancik et al., 2022) employs a block-combination strategy along with
pose refinement, appearance, and exposure embedding on large-scale scenes. Mip-NeRF 360 (Bar-
ron et al., 2022) improves the Mip-NeRF for unbounded scenes by contracting the whole space into
a bounded area to get a more representative position encoding.

Depth supervised NeRF DS-NeRF (Deng et al., 2022) utilizes the sparse depth generated by
COLMAP (Schonberger & Frahm, 2016) to supervise the NeRF training. PointNeRF (Xu et al,,
2022) uses point clouds to boost the training and rendering with geometry constraints. DoN-
eRF (Neff et al., 202 1) realizes the ray sampling in a log scale and uses the depth priors to improve
ray sampling. NerfingMVS (Wei et al,, 2021) also instructs the ray sampling during training via
depth and confidence. Dense depth priors are used in (Roessle et al.,, 2022) which are recovered
from sparse depths.

These methods, however, are designed for processing small-scale objects or indoor scenes. Urban-
NeRF (Rematas et al., 2022) uses accurate dense LiDAR depth as supervision to learn better recon-
struction of the large-scale urban scenes. But these dense LiDAR depths are difficult and expensive
to collect. The common data collected by self-driving cars (Caesar et al., 2019; Sun et al., 2020) can
not be used in training Urban-NeRF because they only acquire noisy and sparse LiDAR points. In
contrast, our S-NeRF can use such defect depths along with a learnable confidence measurement to
learn better neural representations for the large-scale street-view synthesis.

3 NERF FOR STREET VIEWS

In this section, we present our S-NeRF that can synthesize photo-realistic novel-views for both the
large-scale background scenes and the foreground moving vehicles (Section 3.3).
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(a) Noisy sparse points (b) Our depth supervision (c) Learned confidence (d) Our depth rendering

Figure 3: Depth supervision and rendering.

In the street views, there are many dynamic objects. In order to be used for self-driving simulation
or VR applications, dynamic objects must be fully controllable and move in controlled locations,
speed, and trajectories. Therefore, the background scenes and the foreground vehicles must be
reconstructed separately and independently.

We propose a novel NeRF design that uses sparse noisy LiDAR signals to boost the robust recon-
struction and novel street-view rendering. Pose refinement and the virtual camera transform are
added to achieve accurate camera poses (Section 3.2). To deal with the outliers in the sparse LIDAR
depths, we use a depth completion network ( ) to propagate the sparse depth and
employ a novel confidence measurement based on the robust reprojection and geometry confidence
(Section 3.4). Finally, S-NeRF is trained using the proposed depth and RGB losses (Section 3.5).

3.1 PRELIMINARY

Neural Radiance Field (NeRF) represents a scene as a continuous radiance field and learns a mapping
function f : (x,60) — (c,o). It takes the 3D position x; € R?® and the viewing direction 6; as
input and outputs the corresponding color ¢; with its differential density ¢;.The mapping function is
realized by two successive multi-layer perceptrons (MLPs).

NeRF uses the volume rendering to render image pixels. For each 3D point in the space, its color
can be rendered through the camera ray r(¢) = o + td with N stratified sampled bins between the
near and far bounds of the distance. The output color is rendered as:

N
=D Ti(l—e"%)e;, T; =exp Zog (M
i=1

where o is the origin of the ray, 7T; is the accumulated transmittance along the ray, c; and o; are
the corresponding color and density at the sampled point ¢;. §; = t;4+1 — t; refers to the distance
between the adjacent point samples.

3.2 CAMERA POSE PROCESSING

StM ( , ) used in previous NeRFs fails in computing camera poses for the
self-driving data since the camera views have fewer overlaps (Figure 1(b)). Therefore, we proposed
two different methods to reconstruct the camera poses for the static background and the foreground
moving vheicles.

Background scenes For the static background, we use the camera parameters achieved by sensor-
fusion SLAM and IMU of the self-driving cars ( s ) and further
reduce the inconsistency between multi-cameras with a learmng based pose refinement network.
We follow Wang et al. ( ) to implicitly learn a pair of refinement offsets AP =
(AR, AT) for each original camera pose P = [R,T], where R € SO(3) and T' € R3. The pose
refine network can help us to ameliorate the error introduced in the SLAM algorithm and make our
system more robust.

Moving vehicles While the method proposed above is appropriate for the static background, cam-
era pose estimation of moving objects is especially difficult due to the complicated movements of
both the ego car and the target objects. As illustrated in Figure 4, we compute the relative position
P between the camera and the target object. We use the center of the target object as the origin of
the coordinate system. In the experiments, we use the 3D detectors (e.g. ( )) to detect
the 3D bounding box and the center of the target object.

Using the ego car’s center as the coordinate system’s origin. P, represents the position of the target
object. P; is the position of the camera ¢ (there are 5~6 cameras on the ego car). We now transform
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Figure 4: Illustration of our camera transformation process for moving vehicles. During the data
collection, the ego car (camera) is moving and the target car (object) is also moving. The virtual
camera system treats the target car (moving object) as static and then compute the relative camera
poses for the ego car’s camera. These relative camera poses can be estimated through the 3D object
detectors. After the transformation, only the camera is moving which is favorable in training NeRFs.

the coordinate system by setting the target object’s center as the coordinate system’s origin (as
illustrated in Figure 4).

2
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relative camera position.

} represents the old position of the camera or the target object. P, is the new

3.3 REPRESENTATION OF STREET SCENES

In a self-driving system (e.g. Geosim ( )), vehicles on the road play the most im-
portant role in driving decisions. There are some important application scenarios (e.g. expressway)
only contain cars. In this paper, we mainly focus on the background scenes and moving vehicles.
Other rigid and nonrigid objects can also use the similar techniques.

Background scenes The street view sequences in nuScenes and Waymo datasets usually span a
long range (>200m), so it is necessary to constrain the whole scene into a bounded range before the

position encoding. The Normalized Device Coordinates (NDC) ( , ) fails in our
scenes due to the complicated motions of the ego car and the challenging camera settings (Figure
1(b)). We improve the scene parameterization function used in ( ) as:
x/r, if x| <,
fla) = { (2— qap) ey otherwise. 3)

Where r is the radius parameter to decide the mapping boundary. The mapping is independent of the
far bounds and avoids the heavy range compressing of the close objects, which gives more details in
rendering the close objects (controlled by ). We use frustum from Mip-NeRF ( R ),
sampling along rays evenly in a log scale to get more points close to the near plane.

Moving Vehicles In order to train NeRF with a limited number of views (e.g. 2 ~ 6 image
views), we compute the dense depth maps for the moving cars as an extra supervision. We fol-
low GeoSim ( , ) to reconstruct coarse mesh from multi-view images and the sparse
LiDAR points. After that, a differentiable neural renderer ( , ) is used to render the
corresponding depth map with the camera parameter (Section 3.2). The backgrounds are masked
during the training by an instance segmentation network ( , ).

3.4 DEPTH SUPERVISION

As illustrated in Figure 3, to provide credible depth supervisions from defect LIDAR depths, we
first propagate the sparse depths and then construct a confidence map to address the depth outliers.
Our depth confidence is defined as a learnable combination of the reprojection confidence and the
geometry confidence. During the training, the confidence maps are jointly optimized with the color
rendering for each input view.
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LiDAR depth completion We use NLSPN ( , ) to propagate the depth information
from LiDAR points to surrounding pixels. While NLSPN performs well with 64-channel LiDAR
data (e.g. KITTI ( ; ) dataset), it doesn’t generate good results with nuScenes’

32-channel LiDAR data, which are too sparse for the depth completion network. As a result, we
accumulate neighbour LiDAR frames to get much denser depths for NLSPN. These accumulated
LiDAR data, however, contain a great quantity of outliers due to the moving objects, ill poses and
occlusions, which give wrong depth supervisions. To address this problem, we design a robust
confidence measurement that can be jointly optimized while training our S-NeRF.

Reprojection confidence To measure the accuracy of the depths and locate the outliers, we first
use an warping operation 1) to reproject pixels X = (z, y, d) from the source images I to the target
image I;. Let Ps, P, be the source and the target camera parameters, d € D, as the depth from the
source view. The warping operation can be represented as:

X; =y (X, Py), Br) “)
1) represents the warping function that maps 3D points to the camera plane and 1) ! refers to the in-

verse operation from 2D to 3D points. Since the warping process relies on depth maps D;, the depth
outliers can be located by comparing the source image and the inverse warping one. We introduce

the RGB, SSIM ( s ) and the pre-trained VGG feature ( )
similarities to measure the projection confidence in the pixel, patch structure, and feature levels
Crgbzl_‘Is_Is‘7 Cssim:SSIM(Is>Is))7 Cvggzl_”]:s_]:s||~ (5)

Where Z, = T:(Xy) is the warped RGB image, and the F.=F (X¢) refers to the feature reprojec-
tion. The receptive fields of these confidence maps gradually expand from the pixels and the local
patches to the non-local regions to construct robust confidence measurements.

Geometry confidence We further impose a geometry constrain to measure the geometry consis-
tency of the depths and flows across different views. Given a pixel X = (x5, ys, ds) on the depth
image D, we project it to a set of target views using equation 4. The coordinates of the projected
pixel X; = (24, y, d;) are then used to measure the geometry consistency. For the projected depth

d;, we compute its consistency with the original target view’s depth d; = D, (ze,yt):

5 0, if x>,
Caon =10 = d)lja), 20 ={ | % BEZD ©
For the flow consistency, we use the optical flow method ( , ) to compute the pixel’s

motions from the source image to the adjacent target views fs_,;. The flow consistency is then

formulated as:
||Aa: y fs—)t(xw ys)”
C low — ’7( =
! 1A

)7 ALy = (*Tt — T, Yt — Ys)- )

Where 7 is a threshold in v to identify the outliers through the depth and flow consistencies.

Learnable confidence combination To compute robust confidence map, we define the learn-
able weights w for each individual confidence metric and jointly optimize them during the train-
ing. The final confidence map can be learned as ¢ = ZZ w;C;, where Zl w; = 1The i €
{rgd, ssim, vgg, depth, flow} represents the optional confidence metrics. The learnable weights
w adapt the model to automatically focus on correct confidence.

3.5 Loss FUNCTIONS

Our loss function consists of a RGB loss that follows ( ; ;

, ), and a confidence-conditioned depth loss. To boost the depth learnlng, we also
employ edge aware smoothness constraints, as in ( ; , ), to penalize
large variances in depth according to the i 1mage gradlent |(’)I |:

eolor Z ||I ||2 (8)

recR
Licptn = Y C-|D =D ©)
Laomooth = ¥ 102D exp™ 1?11 4|0, D| exp~ 12! (10)
Liotal = Leolor + M Laepth + A2Lsmooth (11)
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Static Vehicles Moving Vehicles
Methods PSNRt SSIMt LPIPS| | PSNRt SSIMtT LPIPS|
NeRF (Mildenhall et al., 2020) 11.78 0.539 0.444 — — —
GeoSim (Chen et al., 2021b) 11.58 0.602 0.367 12.24 0.623 0.322
Ours 1881 0.785 0.194 1800 0.736  0.226

Table 1: Novel view synthesis results on foreground cars. We compare our method with the NeRF
and GeoSim baselines. Since COLMAP fails on foreground vehicles, we apply our camera param-
eters to the NeRF baseline when training the static vehicles. We report the quantitative results on
PSNR, SSIM (Wang et al., 2004) (higher is better) and LPIPS (Zhang et al., 2018) (lower is better).

ass

(a) NeRF (b) GeoSim (c) Ours (d) GT RGB

Figure 5: Novel-view synthesis results for static foreground vehicles. Results are reconstructed from
4~7 views. Our method outperforms others (Chen et al., 2021b; Mildenhall et al., 2020) with more
texture details and accurate shapes.

Where R is a set of rays in the training set. For the reconstruction of the foreground vehicles, D
refers to the depth. And in background scenes, D represents the disparity (inverse depth) to make the
model focus on learning important close objects. A; and A9 are two user-defined balance weights.

4 EXPERIMENTS

We perform our experiments on two open source self-driving datasets: nuScenes (Caesar et al., 2019)
and Waymo (Sun et al., 2020). We compare our S-NeRF with the state-of-the-art methods (Barron
etal, 2021;2022; Rematas et al., 2022; Chen et al., 2021b). For the foreground vehicles, we extract
car crops from nuScenes and Waymo video sequences. For the large-scale background scenes, we
use scenes with 90~ 180 images. In each scene, the ego vehicle moves around 10~40 meters, and
the whole scenes span more than 200m. We do not test much longer scenes limited by the single
NeRF’s representation ability. Our model can merge different sequences like Block-NeRF (Tancik
et al., 2022) and achieve a larger city-level representation.

In all the experiments, the depth and smooth loss weight A\; and A9 are set to 1 and 0.15 respectively
for foreground vehicles. And for background street scenes, we set 7 = 20% for confidence mea-
surement and the radius » = 3 in all scenes. A\; = 0.2 and Ay = 0.01 are used as the loss balance
weights. More training details are available in the supplementary materials.

4.1 NOVEL VIEW RENDERING FOR FOREGROUND VEHICLES

In this section, we present our evaluation results for foreground vehicles. We compare our method
with the latest non-NeRF car reconstruction method (Chen et al., 2021b). Note that existing
NeRFs (Mildenhall et al., 2020; Deng et al., 2022) cannot be used to reconstruct the moving ve-
hicles. To compare with the NeRF baseline (Mildenhall et al., 2020), we also test our method on the
static cars. Since COLMAP (Schonberger & Frahm, 2016) fails in reconstruct the camera parame-
ters here, the same camera poses used by our S-NeRF are applied to the NeRF baseline to implement
comparisons.

Static vehicles Figure 5 and Table 1 show quantitative and visualized comparisons between our
method and others in novel view synthesis. Optimizing NeRF baseline on a few (4~7) image views
leads to severe blurs and artifacts. GeoSim produces texture holes when warping textures for novel
view rendering. The shapes of the cars are also broken due to the inaccurate meshes. In contrast,
our S-NeRF shows more fine texture details and accurate object shapes. It can improve the PSNR
and SSIM by 45~65% compared with the NeRF and GeoSim baselines.

Moving vehicles As compared in Figure 2(c)~2(d) and Table 1, novel view synthesis by
GeoSim (Chen et al.,, 2021b) is sensitive to mesh errors that will make part of the texture miss-



Published as a conference paper at ICLR 2023

(a) Urban NeRF (b) Mip-NeRF 360 (c) Ours

Figure 6: We render the 360 degree panoramas (in a resolution of 8000 x 800) for comparisons (zoom
in to see details). Significant improvements are highlighted by red rectangles and cropped patches
are shown to highlight details. See the appendix for more results.

Large-scale Scenes Synthesis
Methods PSNR?T SSIM?T LPIPS|
Mip-NeRF (Barron et al., 2021) 18.22 0.655 0.421
Mip-NeRF360 (Barron et al., 2021) 24.37 0.795 0.240
Urban-NeRF (Rematas et al., 2022) 21.49 0.661 0.491
Ours 26.21 0.831 0.228

Table 2: Our method quantitatively outperforms state-of-the-art methods. Methods are tested on
four nuScenes Sequences. Average PSNR, SSIM and LPIPS are reported.

ing or distorted during novel view warping and rendering. In contrast, our S-NeRF provides larger
ranges for novel view rendering than geosim (see supplementary) and generates better synthesis
results. S-NeRF can also simulate the lighting changing for different viewing directions, which is
impossible for GeoSim. Furthermore, S-NeRF does not heavily rely on accurate mesh priors to ren-
der photorealistic views. The confidence-based design enables S-NeRF to eliminate the geometry
inconsistency caused by depth outliers. S-NeRF surpasses the latest mesh based method (Chen et al.,
2021b) by 45% in PSNR and 18% in SSIM.

4.2 NOVEL VIEW RENDERING FOR BACKGROUND SCENES

Here we demonstrate the performance of our S-NeRF by comparing with the state-of-the-art meth-
ods Mip-NeRF (Barron et al., 2021), Urban-NeRF (Rematas et al., 2022) and Mip-NeRF 360 (Bar-
ron et al., 2022). We use the offical code of Mip-Nerf for evaluation and expand the hidden units
of the MLP to 1024 (the same as ours). Since there is no official code published, we tried our
best to reproduce (Rematas et al., 2022; Barron et al., 2022) based on our common settings. We
test four nuScenes sequences and report the evaluation results in Table 2. Our method outperforms
Mip-NeRF, Mip-NeRF 360 and Urban NeRF in all three evaluation metrics. We see significant im-
provements of 40% in PSNR and 26% in SSIM and a 45% reduction in LPIPS compared with the
Mip-NeRF baseline. It also outperforms the current best Mip-NeRF 360 by 7.5% in PSNR, 4.5% in
SSIM and 5% in LPIPS. We also show 360-degree panoramic rendering in Figure 6. S-NeRF sig-
nificantly ameliorates artifacts, suppresses “floaters” and presents more fine details compared with
Urban-NeRF and Mip-NeRF 360. Results of Waymo scenes are shown in the appendix.
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Background Scenes (background) Moving Vheciles

‘ PSNRT SSIMt LPIPS] ‘ PSNRT SSIM? LPIPS]
Mip-NeRF or GeoSim |~ 15.55 0.533 047 | 13.00 0.651 0.280
Our RGB 24.41 0.790 0.230 15.26 0.718 0.282
w/o depth confidence 24.30 0.775 0.279 18.09 0.748 0.206
w/o smooth loss 25.06 0.804 0.231 19.62 0.796 0.159
Full Settings | 2501 0.805 0232 | 19.64 0.803 0.136

Table 3: Ablations on different settings. For background scenes, we use two nuScenes sequences
for evaluations. For moving vehicles, four cars are trained under different settings.

- V 3 s 0 ) ¥ X £
= T = . - = - —— -
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(a) RGB only (b) w/o depth confidence (d) Full Settins

(c) w/o smooth loss

Figure 7: Ablation study on different training settings of (a) RGB only, (b) noisy depth supervision,
(c) using depth confidence, and (d) full supervision settings.

4.3 BACKGROUND AND FOREGROUND FUSION

There are two different routes to realize controllable foreground and background fusion: depth-
guided placement and inpainting (e.g. GeoSim Chen et al. (2021b)) and joint NeRF rendering (e.g.
GIRAFFE Niemeyer & Geiger (2021)). Both of them heavily rely on accurate depth maps and 3D
geometry information for object placement, occlusion handling, etc.. Our method can predict far
better depth maps and 3D geometry (e.g. meshes of cars) than existing NeRFs (Zhang et al., 2020;
Barron et al.,, 2022). We provide a video (in the supplementary materials) to show the controlled
placement of vehicles to the background using the depth-guided placement.

4.4 ABLATION STUDY

To further demonstrate the effectiveness of our method, we conduct a series of ablation studies with
or without certain component. Table 3 shows the quantitative results of our model ablations. We
evaluate our model on four foreground vehicles and two background scenes under different settings.
Visualized results are also provided in Figure 7. More ablation studies are available in the appendix.

For background scene rendering, our RGB baseline outperforms the Mip-NeRF by 56% in mean-
squared error and 42% in structure similarity. Using inaccurate depth supervision without confi-
dence leads to a drop of the accuracy due to the depth outliers. Confidence contributes to about 3%
improvement in PSNR and SSIM. PSNR of our model slightly drops after adding the edge-aware
smooth loss to it. However, it effectively suppresses “floaters” and outliers to improve our depth
quality. For moving vehicles, the depth supervision and confidence measurement improves the RGB
baseline by 18% and 8% in PSNR individually. The smoothness loss mainly improves the structure
similarity and reduces the LPIPS errors.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

We contribute a novel NeRF design for novel view rendering of both the large-scale scenes and
foreground moving vehicles using the steet view datasets collected by self-driving cars. In the ex-
periments, we demonstrate that our S-NeRF far outperforms the state-of-the-art NeRFs with higher-
quality RGB and impressive depth renderings. Though S-NeRF significantly outperforms Mip-
NeRF and other prior work, it still produces some artifacts in the depth rendering. For example, it
produces depth errors in some reflective windows. In the future, we will use the block merging as
proposed in Block-NeRF (Tancik et al., 2022) to learn a larger city-level neural representation.
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APPENDIX

(Due to file size limit, images in appendix is compressed, view lossless version on
https://ziyang-xie.github.io/s-nerf)

A  MORE ILLUSTRATIONS
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Figure 8: Overview of our S-NeRF framework.

Method Overview The overview of the method is shown in Figure 8. We first propagate the sparse
LiDAR points into a dense depth map and compute the geometry and the projection confidence
maps. We use learnable combination to achieve the final confidence maps to reduce the influence of
depth outliers.

O

b | Reprojection

y(- P]) y(-,P) Conslslency
(a.1) Depth/Flow \;\ (b) Reprojected (c) Target Depth / Feature Maps  —» (d) Confidence Maps
(a.2) RGB/SSIM/VGG Feature Confdence

Figure 9: Illustration of the confidence computation.

Computation of Confidence Figure 9 shows the process of computing confidence maps. We
compute the depth confidence by reprojection the depth maps to other views.

Given the LiDAR positions of the consecutive frames [P;_1, P;, P;y1] at different time [t—1, ¢, t+1],
we are able to project the 3D LiDAR points at time t-1 and t+1 to t by A Pbetween Prand P;—1 /Py 1.
This is similar to the mapping functionyin Eq. (4) of the paper. Most outliers of the moving objects
and other regions can be removed by the consistency check using the optical flow and the depth
projection (Eq. (6-7) of the paper). The rest outliers can also be handled by the proposed confidence-
guided learning.
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Geometry Confidence Projection Confidence

VGG

Confidence Maps

Figure 10: Visualization of each confidence component. Brighter regions mean higher confidence.
Geometry confidences (flow and depth) represents the geometry consistency as computed in Fig.
2(a.1). The projection confidence measure the photometric and feature consistency as computed in
Fig. 2(a.2).

Illustration of Confidence Maps In Figure 10, we visualize different confidence components.
Depth and optical flow confidence maps focus on geometry consistency between adjacent frames,
while RGB, SSIM and VGG confidence maps compute the photometric and feature consistency.

Other Dynamic Objects. In Fig. 11, we reconstruct a moving truck using only 4 image views.
The novel-view rendering quality (Fig. 11) is good enough for our driving simulation. For the
dynamic person, since only a limited number of image views can be captured for a single person in
the nuScenes and Waymo datasets, and the person is also walking with varying poses. It’s difficult to
reconstruct high-quality 3D person using only a few (2-5) views. We instead use existing monocular
video data to reconstruct 3D person and rendering novel views with novel poses. Fig. 12 shows
examples using Anim-NeRF Chen et al. (20212) to reconstruct persons in People-Snapshot dataset
Alldieck et al. (2018). Then, we can put the 3D persons (with novel views and novel poses) to the
S-NeRF scenes for the realistic driving simulation (Fig. 13). Similarly, other objects (e.g. bicycles)
can be first reconstructed and then combined into our S-NeRF scenes for driving simulation.

& LB &b

Figure 11: Novel view rendering of a reconstructed moving truck.

Figure 12: Novel-view and novel-pose rendering for the reconstructed dynamic persons.
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Figure 13: After novel-view and novel-pose rendering for the reconstructed persons, we also com-
bine the dynamic persons into our rendered S-NeRF scenes.

B IMPLEMENTATION DETAILS

B.1 DEPTH COMPLETION

We use NLSPN[Park et al. (2020)] network for depth completion, which propagates the depth in-
formation from sparse LiDAR points to surrounding pixels. While NLSPN performs well with
64-channel LiDAR data, such as KITTIGeiger et al. (2012; 2013) and waymoSun et al. (2020);
Ettinger et al. (2021) datasets, it doesn’t generate good results with nuScenesCaesar et al. (2019)
32-channel LiDAR data, which are too sparse to complete the depth. We accumulate 5~10 neigh-
bour LiDAR frames to get a much denser LiDAR data for the NLSPN network. These accumulated
LiDAR points, however, contains many outliers due to the moving objects, ill poses, occlusions and
reprojection errors. These outliers will give wrong depth information. To remove these outliers,
we first compute the optical flow Zhang et al. (2021) of one RGB image using its neighbour frame.
After that, we reproject each LiDAR points to neighbour image plane to get the LiDAR flow, and
then compare two kinds of flows to locate the LiDAR outliers using a threshold of 20% (following
Eq. (6~8) of the paper).

Applying above procedure, we can remove many outliers. However, some of these outliers still exists
due to the errors of the optical flow and ill poses. These outliers still exist after depth completion.
The depth completion algorithm also introduces new outliers to the final dense depth map, which
are great challenges for depth supervision. We therefore learn an confidence metric for more robust
depth supervision.

B.2 REMOVE MOVING OBJECTS IN STREET VIEWS

Currently, we focus on static scenes. When training the background scenes, we masked the moving
objects, while static objects (e.g.static vehicles) are kept and trained along with the background. The
moving vehicles are trained independently. Other moving objects (e.g.person) can be removed by
instance segmentation and optical flow.

B.3 FOREGROUND VEHICLES

For foreground vehicles, we use four layers with 256 hidden units in the MLP. The depth and smooth
loss weights A1 and )\, are set to 1 and 0.15 respectively. We sample 64 times along each ray during
the RGB and depth rendering. We train our S-NeRF for 30k iterations using Adam optimizer with
5~% as the learning rate and 1024 as the batch size. The training takes about 2 hours for each vehicle
on a single RTX3090 gpu. For each vehicle, there are around 2~8 views used for training and 1~3
views for testing.

B.4 STREET VIEWS (BACKGROUND)

For background street scenes, we set 7 = 20% for the confidence measurement and the radius r = 3
for the scene parameterization function. Our coarse-fine network share the same parameters like
mip-NeRF. The density MLP has eight layers with 1024 hidden units and the color MLP consists of
three layers with 128 hidden units. We keep this setting for all evaluation methods for fair compar-
isons. We train our S-NeRF for 100K iterations using Adam optimizer with a batch size of 2048.
The learning rate is reduced log-linearly from 5x 10™% to 5x 10~ with a warm-up phase of 2500
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Large-scale Scenes Synthesis on Waymo dataset

Methods PSNR? SSIM?T LPIPS|
Mip-NeRF ( ) 16.89 0.412 0.755
Mip-NeRF360 ( ) 22.10 0.724 0.445
Urban-NeRF ( ) 17.80 0.494 0.701
Ours 23.60 0.743 0.422
Table 4: Our method quantitatively outperforms state-of-the-art methods ( ; );

( ). Methods are trained on two waymo scenes. Average PSNR, SSIM and LPIPS
are reported.

Foreground Vehicles

Methods PSNRT SSIMt LPIPS,
NeRF ( ) 14.22 0.739 0.32
GeoSim ( ) 14.27 0.742 0.186
Ours 23.16 0.870 0.156

Table 5: Novel view synthesis results on foreground cars from Waymo dataset. We compare our
method with the NeRF and GeoSim baselines. Since COLMAP fails on foreground vehicles, we
apply our camera parameters to the NeRF baseline when training the static vehicles. We report the
quantitative results on PSNR, SSIM ( ) (higher is better) and LPIPS

( ) (lower is better).

iterations. A; = 0.2 and A\, = 0.01 are used as the loss balance weights. We sample 128 times along
each ray in a log scale. Our S-NeRF is trained on two RTX3090 GPUs which takes about 17 hours
for a scene with about 250 images (with a resolution of 1280 1920).

C EXPERIMENTS

We present more visualized results in Figure 14 and Figure 16. We also provide a video demo for
performance illustration.

C.1 PARAMETERS AND EFFICIENCY

In the experimennts, we use the same settings for the MLP encoding in our S-NeRF and other state-

of-the-art methods ( ; ); ( ). There are 8.76M learnable

parameters in our S-NeRF that is similar to other state-of-the-art methods ( ; );
( ) (8.7~9.9M).

All the methods are trained for 100k iterations. Our method takes about 17 hours in training for
one street scene. This is the same as Mip-NeRF and Urban-NeRF because we use the same settings
during the experiments. Mip-NeRF 360 is faster than ours because it doesn’t require the coarse ren-
dering for supervision. This strategy can also be used in our S-NeRF to accelerate the convergence
and further improve the quality of the novel view rendering.

C.2 WAYMO RESULTS

We also test our S-NeRF on two Waymo street-view sequences. The results are reported in Table
4 and visually compared with the state-of-the-arts ( ); ( ) in
Figure 15 and 16. Waymo dataset use a 64-channel LiDAR and five cameras for capture driving
scenes. Our S-NeRF outperforms Mip-NeRF by 40% in PSNR, 80% in SSIM and 44% in LPIPS.
It’s also far better than the Urban-NeRF baseline (32~50% 7 in PSNR, SSIM and LPIPS) which
also uses the sparse LiDAR depth as supervision. Compared with the current best Mip-NeRF 360,
our method also achieves a 6.8% improvements in PSNR and a 5.2% reduction of the LPIPS error.
More importantly, our S-NeRF predicts much more accurate depths for the large-scale street views.
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M A2 | PSNRt SSIM*t LPIPS|
0.1 0.01 24.00 0.770 0.385
0.4 0.01 23.85 0.767 0.397
0.2 0.005 23.95 0.769 0.382
0.2 0.02 23.98 0.771 0.390
0.2 0.05 23.78 0.767 0.406
0.2 0.01 24.05 0.771 0.384

Table 6: Ablations on loss balance weights Aq, Ao for background street views.

M X2 | PSNR? SSIMt LPIPS,

0.5 0.15 19.56 0.794 0.149
2 0.15 19.67 0.802 0.149
1 0.075 19.85 0.803 0.147
1 0.3 19.47 0.789 0.147
1 0.15 19.64 0.803 0.136

Table 7: Ablations on loss balance weights A;, As for foreground vehicles.

We also use Waymo dataset to compare our method with the NeRF baseline on the vehicle synthesis.
The quantitive evaluations are shown in Table 5 and visually compared in Figure 14. Our method
outperforms the NeRF baseline by 63% in PSNR, 18% in SSIM and 51% in LPIPS. Compared
with the recently proposed mesh-based car reconstruction method ( ), our S-NeRF
improves the PSNR by 62% and reduces the LPIPS error by 16%.

C.3 COMPARISONS WITH URBAN-NERF

Urban-NeRF also use the LiDAR depth to boost the NeRF training. However, it requires accurate
LiDAR depth. Most of the street view datasets (e.g. Waymo and nuScenes) contains plenty of depth
outliers due to the influence of ill poses, reprojection errors, occlusion and moving objects. We
find that these depth outliers can heavily influence the rendering quality of Urban-NeRF. Our S-
NeRF introduces confidence metrics to make it more robust to the depth outliers. Moreover, our
S-NeRF improves the scene parameterization function and the camera poses to learn better neural
representation for rendering large-scale street views. As shown in Figure 16 and 15, compared with
Urban-NeRF, our S-NeRF gives more details in street-view objects (such as the car, the tree and
road lines) and are more robust for the large-scale street views captured by the self-driving cars.

C.4 MORE ABLATION STUDY

In this section, we use two nuScenes street-view scenes and three foreground vehicles to test the
effects of different settings when training our S-NeRF. These include different loss balance weights,
different confidence components, different depth qualities and different scene parameterizations. In
these ablation experiments, S-NeRF is trained for 30k iterations.

Loss balance weights

As shown in Table 6 and 7, we compare the performance of our S-NeRF using different loss balance
weights. Our S-NeRF is not very sensitive to the changes of the loss balance weights. Using larger
or smaller \; or \; just slightly reduces the PSNR and SSIM by 0.2~1% on the background novel
view rendering. [0.1,0.4] (for A1) and (0.005,0.02) (for A2) are the reasonable range for our loss
balance weights for training street background views. For the foreground vehicles, [0.5, 2] (for A;)
and (0.075,0.015) (for \y) are the reasonable range.
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Reporjection Geometry ‘ PSNRtT SSIMt LPIPS|
Yes No 23.88 0.767 0.385
No Yes (1 = 20%) 23.95 0.770 0.385
Yes Yes (1 = 10%) 23.93 0.771 0.385
Yes Yes (7 = 40%) 23.97 0.771 0.384
Yes Yes (1 = 20%) ‘ 24.05 0.771 0.384

Table 8: Ablations on confidence settings for novel street-view rendering (background)..

RGB confidence SSIM confidence ‘ PSNR?T SSIM?t LPIPS|

Yes No 19.79 0.803 0.152
No Yes 19.97 0.807 0.145
Yes Yes | 1964 0.803 0.136

Table 9: Ablations on confidence components for foreground vehicles.

Confidence components

We also test the performances of our S-NeRF when using different confidence components (geome-
try and reprojection measurements) for learning our confidence metric. As shown in Table 8, when
we remove the reprojection confidence module, the PSNR slightly dropped by 0.4%. And when we
train S-NeRF without geometry confidence, the PSNR and SSIM is about 0.7% lower. We also test
the effects of the threshold 7 used in the geometry confidence (Eq. (7) of the paper). We find that
the geometry confidence is not sensitive to the threshold 7. [10%, 40%] is a reasonable range for the
threshold .

For the foreground vehicles, we only use RGB and SSIM confidences. This is because the depth
map used in training vehicles are relatively better than the backgrounds. Thus, we do not need strong
geometry confidences. We report these ablation results in Table 9 by using only RGB confidence
or SSIM confidence. We find that using only RGB or SSIM confidence could achieve a little better
PSNR (1~2%1), but a relative worse LPLPS (6.6 ~ 11%J/.). Taken all these three evaluation metrics
into consideration, using both RGB and SSIM confidence gives a better performance in training our
S-NeRF. We also report depth error rate in Table 10.  For the accurate depths, it predicts high
confidence to encourage the NeRF geometry to be consistent with the LiDAR signal.

Depth quality

As shown in Table 12, we study the effects of different depth map qualities. We train our S-NeRF
using depth map in different qualities. To simulate the depth errors in different qualities, we add
random Gaussian Noise to the original depth map inputs. The strength of the noise (the quality of
the depths) is measured by PSNR and error rates compared with the original depth inputs. Error rate
means how many outliers are introduced by the noise. We use threshold = 1 to compute the outlier
rates compared with the original depth inputs. Our method achieve similar rendering qualities when
training with light noises, which means the light noises doesn’t influence the performance of our S-
NeRF. When training with strong noises, the PSNR and SSIM just slightly dropped by 0.05~0.5%.
This shows that our method is robust to depth noises because our confidence strategy can locate and
measure the depth outliers accurately and avoid the negative influence of the depth noises in training
our S-NeRF.

Besides, we also test the performance of our S-NeRF when using only sparse depth for supervision
(Table 11). It performs better than our RGB-only S-NeRF (improving the PSNR by 5%). But, it is
2% worse in PSNR and 8% worse in LPIPS than our default settings where dense depth map and the
proposed confidence metric are used. This means that dense depth maps can provide more useful
geometry information for training our S-NeRF even though they may contain more depth outliers.
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Components of confidence 2*Metrics
Rerojection confidence ‘ Geometry confidence

rgb ssim veg ‘ depth flow PSNR Depth error rate

23.15 30.70%

v 23.83 26.85%

v 23.97 26.73%

v 23.94 26.25%

v 23.95 25.50%

v 24.03 24.92%

v v 23.95 24.59%

v v v 23.88 26.75%

v v v v v 24.05 24.43%

Table 10: Ablation study on confidence components.

Depth Settings | PSNRf SSIM? LPIPS,
No Depth 22.45 0.742 0.433
Sparse 23.65 0.756 0.415
Dense w/o confidence 23.15 0.757 0.424
Dense w/ confidence ‘ 24.05 0.771 0.384

Table 11: Ablations on depth supervision for novel street-view rendering (background).

In addition, we also test another two worse depth completion methods by replacing the NLSPN
with ( ); ( )(Table 13). Even using the worse traditional
depth completion method ( )(without learning a deep neural network), our S-NeRF
still achieves a similar rendering quality (24.41—24.40). This experiment shows that our method
doesn’t rely on NLSPN depth quality. Benefiting from our confidence-guided depth supervision,
many other depth completion methods can also be used in our S-NeRF.

Scene and ray parameterization

We studied the effects of using different radius in the scene parameterization function (Eq. (2) of
the paper). Radius r is used to constrain the whole large-scale scene into a bounded range. Close
and far points are parameterized by different distance mapping function to make our S-NeRF able to
keep more details for the close objects. This is controlled by the radius parameter. In Table 14, we
report the performance of our S-NeRF when using different radius for scene parameterization. We
find that choosing 7 in 3~10m could produce a better results than the original setting in Mip-Nerf
360 ( ). This is because the street views in nuScenes and Waymo datasets usually
span a long range (>200m). While, Mip-Nerf 360 ( ) do not have r to adjust the
scene parameterization as ours.

Influence of quality of 3D detection results

As shown in Table 15, the quality of 3D object detector does not significantly influence the rendering
quality. This is because we use pose refinement to improve the inaccurate initial results of the virtual
camera pose estimation. The pose refinement is guided by depth supervision and visual multiview
constraints in training our S-NeRF. We test the rendering results by using 3D bounding boxes of
different qualities (mIoU: 0.79, 0.67 and 0.55) and compare them with the ground truth bounding
boxes (achieved from the dataset labels). We find that the PSNR doesn’t drop significantly compared
with the ground truth bounding boxes. When the mIoU of the bounding boxes is 0.79 (using the
default detector), the PSNR just slightly drops by 0.23, the SSIM drops by 0.04, and the LPIPS
doesn’t change. When we use poor detection results, our S-NeRF still produces good results with a
slight drop in the rendering quality. (E.g. 0.49 [when the mloU is 0.67 and 0.97 |for a poor mloU
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Depth noise (PSNR) Depth error rate (%) \ PSNR? SSIM?t LPIPS|

>50 9.5 24.07 0.772 0.384
>50 15.2 24.04 0.771 0.384
50 26.5 24.01 0.771 0.384

35 85 23.97 0.770 0.386

25 95 23.95 0.767 0.391
raw depth 0 | 24.05 0.771 0.384

Table 12: We study the effects when training our S-NeRF with depth map in different qualities. We
add random Gaussian Noise to the original input depth maps. The strength of the noise is measured
as PSNR and error rates. Error rates represent how many outliers are introduced by the noise. Our
S-NeRF is robust to depth noises.

Method ‘ Mean absolute error/[mm] (KITTI) Rank on KITTI leaderboard PSNR SSIM LPIPS
Traditional method ( ) 302.60 116 24.40 0.782 0.344

( ) 215.02 61 24.50 0.785 0.344
Our default NLSPN 199.59 40 24.41 0.783 0.345

Table 13: Effects of different depth completion methods

of 0.55). We observed that the detected bounding boxes ( > 0.5 in IoU) are good enough for training
our S-NeRF. This can be easily realized by many existing 3D object detectors.

Different pose refinements

We have tried different pose refinements like NeRF—, BARF and SCNeRF. As shown in Table 17,
We find that NeRF- helps achieve the best quality when training on the self-driving dataset. Possibly
because NeRF- is more straightforward. It directly learns shifts to the translation and rotation. The
shifts are relatively easier to learn under depth supervision. It’s also possible that such shifts are
easier to estimate when there is a small overlapped field of view between different cameras (as
illustrated in Figure 1 of the paper.)

Training and Inference time

Referring to Table 16, we show more details of our method against the existing large-scale NeRFs
with the training time and inference time. Our method (default settings) uses the same training
setting and network parameters as those of MipNeRF. They take the same time in training and
inference. When we implement the MipNeRF-360 strategy (the distillation mode, all other settings
are kept the same), the light proposal MLP reduces both the training time and the inference time. It
runs 30% faster in training and 40% faster in inference than the default settings (with a drop of 0.33
in PSNR).

D LIMITATIONS AND SOCIAL IMPACTS

Failure cases. Considering that the ego vehicle sometimes goes very fast, fewer images are cap-
tured by the side (left or right) cameras. Some objects/contents only appeared in one or two left/right
images. This makes it hard to render high-quality left and right novel views. As shown in Table 18,
since there are fewer views, the rendered side (left/right) views report worse PSNR, SSIM and LPIPS
(5~ 12% |) compared with the front and back views. In the future, we will try some techniques
(e.g. using a better method to densify depth or provide semantic supervision) to further improve the
quality of rendering left and right views.

Potential risks. Since our method can be used to render realistic street views and vehicles, it’s
possible that S-NeRF can be used to synthesize fake photos or videos. We therefore hope our S-
NeRF could be used with cautiousness. Work that bases itself on our method should also carefully
consider the consequences of this potential negative social influence.
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r | PSNRt  SSIM{  LPIPS|
Im 23.95 0.769 0.384
Sm 24.07 0.771 0.385
10m 24.05 0.771 0.384
3m | 24.05 0.771 0.384

Table 14: Ablations on radius r in our scene parameterization function (EQ. (14) of the paper) for
novel street-view rendering (background).

Bounding box types | mloU PSNR SSIM LPIPS

GT bouding box 1.0 23.50 0.862 0.111
CenterPoints ( ) 0.787 23.27 0.858 0.111
poor bounding box 0.672 23.01 0.845 0.126

poor bounding box 0.554 22.53 0.841 0.129

Table 15: Performance of our S-NeRF by using 3D bounding boxes in different qualities (mlIoU).

Method Training time Inference time (resolution) PSNR

MipNeRF 17 hours 370s 17.34
MipNeRF-360 12 hours 210s 23.17

Ours 17 hours 370s 25.68

Ours with distill mode of MipNeRF-360 12 hours 210s 25.35

Table 16: Evaluation of the training time and the inference speed (on an RTX A6000 GPU).

Method | PSNR SSIM LPIPS

BARF (2021) 22.23 0.751 0.451

BARF w/o initialization 12.16 0.527 0.634
SCNeRF (2021) 25.15 0.784 0.377
SCNeRF w/o initialization 14.24 0.578 0.583

Ours | 25.68 0.788 0.375

Table 17: Comparisions of NeRF—, BARF and SCNeRF in training our S-NeRF

Camera ‘ PSNR SSIM LPIPS
Front/Back views 22.22 0.731 0.389
Left/Right views 21.17 0.681 0.498

Table 18: Rendering qualities of the front views and side views.
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(a) NeRF baseline

(b) Our S-NeRF

Figure 14: Comparisons with NeRF baseline for foreground car rendering. Four different novel
views are rendered for five different cars. Our S-NeRF significantly reduce the “floats”, blurs and
other artifacts.
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(a) Urban NeRF depth & RGB  (b) Mip-NeRF 360 depth & RGB (c) ours depth & RGB

Figure 15: Comparisons with state-of-the-art Mip-NeRF 360 Barron et al. (2022) and Urban-
NeRF Rematas et al. (2022).
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Urban NeRF RGB

Our S-NeRF Depth

Figure 16: We render more 180 degree panorama views for visual comparisons. Scenes are from the
Waymo datasets.

24



